EDA-F 2.01

Programm for the demonstration of the potential of energy saving by temporary using a poolcover for an outdoor pool

at the example of not translucent hollow section PVC-slats

licend for

grando GmbH pool covers

Lizenz-Nr.: 0001.2.01.6.99

evolved by

Fraunhofer-Institut für Bauphysik

Gips-Schüle-Abteilung Institutsleiter: Univ.-Prof. Dr.-Ing. habil. Dr. h.c. mult. Dr. E.h. mult. Karl Gertis Nobelstr. 12, 70569 Stuttgart, Germany Ansprechpartner: Dipl.-Ing. Michael Würth Tel.: 0711 / 970-3438, Fax: 0711 / 970-3385, e-mail: wuerth@ibp.fhg.de

1999

www.ibp.fhg.de/gips

Info zum Programm EDA-F2.01,1999

Notes for using the programms EDA-F or EDA-H:

1.) The programm EDA-F 2.0 (Energieeinsparpotentiale durch Abdeckungen-Freibad -potential of energy saving by using covers for outdoors pools) shows the balance of different energy streams wich are in interchange with the surrounding,

2.) The accuracy of the calculation depends very much of the quality of the boundary condition as (measurements, temperature, abundance for freshwater supply). The user should take care of particularly those parameters, which could change because of timing or regional fluctuations, f.e. the temperature of the water. This circumstances could cause variations of some percentage. In case of doubt, it is recommended to repeat the calculation several times to see the influence of the instable value to the result.

3.) The calculation is basing of monthly average values of outside temperature, dewpoint temperature and monthly totals of solarirradiation in horizontal. Those parameters are according to TRY from the region arround Würzburg / Germany. Those were listed in the registersheet climate-data. If the real climate-data are different to the assumend climant-data, this will have an effect to the quality of the calculation. The wind speed is very important, the user can choose between variable climate data or fixed values.

4.) With EDA only one pool, with or without cover, can be calculated. If there are many pools with only one summary energyvalue, every single pool has to be calculated with EDA and at the end, those values have to be accumulated. This has the advantage, that for every single pool different values like watertemperature etc. are possible.

5.) The values, which were calculated by the programm, are not construed for heating, aeration or air condition. This invastigation is basing upon the general conditions for the execution of research & development of the Fraunhofer organisation. Issues and dissemination to a third person are not allowed.

Fraunhofer-Institut für Bauphysik, Juni 1999

Influence of the pool cover to the energy and costbalance of an outdoor pool.

Other boundry conditions, please see our input sheet

Dynamic accomodation	Value	Unit	
Pool lenght	12.2	m	
Pool width	6.1	m	
Deepness of pool	1.8	m	
Pool surface	76	m²	
Pool volume	133.956	m³	
Area of poolwall and ground	142.14	m²	
Distance to cover from border inwards	0.03	m	
Distance to cover from border outwards	0.05	m	
Covered pool area	73	m²	
Supposed air speed on the ground	0.5	m/s	
Air pressure or ambient air	1013	mbar	
Saturated vapour pressure of internal air bei WT	3777	Pa	
Water content of internal air bei WT	24.09	g/kg tr. Luft	
Watertemperature of pool	28.0	°C	
Fresh water temperature	10.0	°C	
Additional fresh water supply	0	l/m²d	
Variant period of balance	May through Sept		
Daily period without cover	4	h/d	
Efficiency of current	1	-	
Efficiency of gas	0.9	-	
Efficiency of oil	0.85		
Energycosts DM /kWh	0.08	Cent/kWh	
	0.00	Contraction	
Emitting power of water	0.94	-	
Emitting power of cover	0.90	-	
Effective absorptivity of water	0.90	-	
Assumed transmission factor of cover	0.20	-	
Bolzmann's constant	5.67E-08	W/m²KKKK	
Thermal resistance cover	0.17	m²K/W	
Heat transfer coefficient	15	W/m²K	
Ground water temperature	10	°C	
Outward heat transfer coefficient of the ground	0.38	W/m²K	
Specific capacity of air	1.006	kJ/kgK	
Specific capacity of water	4.18	kJ/kgK	
Evaporation enthalpy at 0°	2501.6	kJ/kgK	
		-	

